Product Description

High Quality Rubber Shaft Tyre flexible Coupling For Mechanical Equipment
 

Features

Material: cast iron GG25, GG20  steel: C45
Parts: 2 couplings and 1 tire body.
Size from F40-F250. and Type: “B”, “F”, “H”.
Working temp: -20~80ºC
Transmission torque:10-20000N.M
Axial misalignment: D*2%
Radial deviation: D*1%
Angular misalignment:3°-6°
Application: tire couplings are usually used in wet, dusty, under attract, vibration, rotating, and complex working conditions. like:  diesel pump
Installation: easy on, easy off.
Maintenance: no need for lubricating and durability.
 

Product Description

Size Type Bush No. MaxBore Type F&H Type H Serve over
Key
A C D F M
mm Inch L E L E
F40 B 32 33 22 M5 104 82 11
F40 F 1008 25 1″ 33 22 104 82 11
F40 H 1008 25 1″ 33 22 104 82 11
F50 B 38 43 32 M5 133 100 79 12.5
F50 F 1210 32 1 1/4″ 38 25 133 100 79 12.5
F50 H 1210 32 1 1/4″ 38 25 133 100 79 12.5
F80 B 45 55 33 M6 165 125 70 16.5
F80 F 1610 42 1 5/8″ 42 25 165 125 103 16.5
F60 H 1610 42 1 5/8″ 42 25 165 125 103 16.6
F70 B 50 47 35 M8 187 142 80 60 11.5
F70 F 2012 50 2″ 44 32 187 142 80 50 11.5
F70 H 1810 42 1 5/8″ 42 25 187 142 80 50 11.5
F80 B 60 55 42 M8 211 165 98 54 12.5
F80 F 2517 80 2 1/2″ 58 45 211 165 98 54 12.5
F80 H 2012 50 2″ 45 32 211 165 98 54 12.5
F90 H 70 63.5 49 M10 235 188 108 62 13.5
F90 F 2517 60 2 1/2″ 58.5 45 235 188 108 62 13.5
F90 H 2517 60 2 1/2″ 58.5 45 235 188 108 62 13.5
F100 H 80 63.5 49 M10 235 188 120 62 13.5
F100 F 3571 75 3″ 64.5 51 235 188 125 62 13.5
F100 H 2517 60 2 1/2″ 58.5 45 235 188 113 62 13.5
F110 B 90 75.5 63 M12 279 233 128 62 12.5
F110 F 3571 75 3″ 63.5 51 279 233 134 62 12.5
F110 H 3571 75 3″ 63.5 51 279 233 134 62 12.5
F120 B 100 84.5 70 M12 314 264 140 67 14.5
F120 F 3525 100 4″ 79.5 65 314 264 144 67 14.5
F120 H 3571 75 4″ 85.5 51 314 264 144 67 14.5
F140 B 130 110.5 4 M16 359 311 178 73 16
F140 F 3525 100 4″ 81.5 65 359 311 178 73 16
F140 H 3525 100 4″ 81.5 65 359 311 178 73 18
F160 B 140 117 102 M20 402 345 187 78 16
F160 F 4030 115 4 1/2″ 92 77 402 345 197 78 16
F160 H 4030 115 4 1/2″ 92 77 402 345 197 78 16
F180 B 150 137 114 M16 470 394 205 94 23
F180 F 4536 125 5″ 112 89 470 394 205 94 23
F180 H 4535 125 5″ 112 89 470 394 205 94 23
F200 B 150 138 114 M20 508 429 205 103 24
F200 F 4535 125 5″ 113 89 508 429 205 103 24
F200 H 4535 125 5″ 113 89   508 429 205 103 24
F220 B 160 154.5 127 M20 562 474 223 118 27.5
F220 F 5571 125 5″ 129.5 102 562 474 223 118 27.5
F220 H 5571 125 5″ 129.5 102 562 474 223 118 27.5
F250 H 190   161.5 132 M20 628 522 254 125 29.5

 

Related Products

 

 

Company Profile

 

FAQ

Q: How do you ship to us?
A: It is available by air, sea, or train.

Q: How do I pay the money?
A: T/T and L/C are preferred, with different currencies, including USD, EUR, RMB, etc.

Q: How can I know if the product is suitable for me?
A: >1ST confirm drawing and specification >2nd test sample >3rd start mass production.

Q: Can I come to your company to visit?
A: Yes, you are welcome to visit us at any time.
 

chain coupling

Can chain couplings be used in high-speed applications?

Chain couplings can be used in certain high-speed applications, but there are limitations and considerations that need to be taken into account. The suitability of chain couplings for high-speed applications depends on factors such as the specific design of the coupling, the chosen chain type, and the operating conditions. Here are some key points to consider:

  • Coupling Design: The design of the chain coupling plays a crucial role in determining its suitability for high-speed applications. High-speed chain couplings typically incorporate features that minimize vibration, reduce stress concentrations, and ensure smooth operation. Couplings designed for high-speed use may have additional balancing or damping mechanisms to counteract potential issues associated with centrifugal forces and resonance.
  • Chain Type: The type of chain used in the coupling can affect its performance at high speeds. In general, roller chains are commonly used in chain couplings. However, for high-speed applications, special high-speed roller chains or other chain types designed for increased rotational speeds may be required. These chains are designed to minimize friction, reduce wear, and handle the centrifugal forces associated with high-speed operation.
  • Bearing Selection: Proper bearing selection is critical for high-speed chain couplings. The bearings used in the coupling should be capable of handling the anticipated speeds and dynamic loads. High-quality, precision bearings with appropriate lubrication are typically necessary to ensure smooth operation and minimize the risk of premature failure.
  • Balancing and Vibration: High-speed chain couplings should be properly balanced to minimize vibration and ensure stable operation. Imbalances in rotating components can lead to increased noise, excessive stress, and reduced service life. Balancing techniques such as dynamic balancing or the use of counterweights may be employed to achieve smooth and reliable operation.
  • Lubrication: Adequate lubrication is crucial for high-speed chain couplings to minimize friction, reduce wear, and dissipate heat effectively. Proper lubrication practices, including the use of high-quality lubricants and regular maintenance, should be followed to ensure optimal performance and prevent premature failure.

Despite these considerations, it’s important to note that chain couplings may have practical limitations in terms of maximum allowable speeds. The specific speed limitations will depend on factors such as the coupling design, chain type, size, and the operating conditions. It is advisable to consult the manufacturer’s specifications and guidelines to determine the maximum recommended speed for a particular chain coupling.

In certain high-speed applications where chain couplings may not be suitable, alternative coupling types such as flexible disc couplings, gear couplings, or elastomeric couplings specifically designed for high-speed applications may be more appropriate. These couplings are engineered to handle the challenges associated with high rotational speeds, offering improved balance, reduced vibration, and higher speed capabilities.

Overall, when considering the use of chain couplings in high-speed applications, it is essential to carefully evaluate the specific requirements, consult with the manufacturer, and ensure that the coupling is designed and selected to operate safely and reliably at the desired speeds.

chain coupling

How does misalignment affect chain couplings?

Misalignment in chain couplings can have detrimental effects on their performance and lifespan. Here are some ways in which misalignment can affect chain couplings:

  • Increase in Load: Misalignment puts additional load on the coupling components. When the shafts connected by the coupling are not properly aligned, the coupling must compensate for the angular, parallel, or axial misalignment. This increased load can lead to excessive stress and premature wear on the coupling components, such as sprockets, roller chain, and connecting pins.
  • Uneven Load Distribution: Misalignment can cause an uneven distribution of load across the coupling. As a result, some sections of the coupling experience higher stresses than others. This uneven load distribution can lead to localized wear and fatigue, reducing the overall strength and reliability of the coupling.
  • Reduced Power Transmission: Misalignment affects the efficiency of power transmission through the coupling. When the shafts are not properly aligned, there is increased friction and slippage between the roller chain and the sprockets. This slippage reduces the amount of power transferred from one shaft to another, resulting in a loss of efficiency and a decrease in the overall performance of the machinery or equipment.
  • Increased Wear: Misalignment can accelerate wear on the coupling components. The misalignment causes the roller chain to operate at an angle or with excessive tension, causing additional stress and wear on the chain links, sprocket teeth, and connecting pins. The increased wear can lead to chain elongation, loss of engagement with the sprockets, and ultimately, coupling failure.
  • Noise and Vibration: Misalignment often results in increased noise and vibration during operation. The misaligned coupling generates additional vibrations and impacts, leading to excessive noise and potential damage to the coupling and surrounding equipment. These vibrations can also propagate through the connected machinery, affecting its overall performance and reliability.

To mitigate the negative effects of misalignment, it is crucial to ensure proper alignment of the shafts and the chain coupling during installation and periodically check and adjust the alignment as needed. Proper alignment minimizes stress on the coupling components, maximizes power transmission efficiency, and extends the service life of the chain coupling.

chain coupling

What are the different types of chain couplings available?

Chain couplings come in various designs and configurations to suit different application requirements. Here are some common types of chain couplings:

  • Standard Roller Chain Couplings: These are the most basic and widely used type of chain couplings. They consist of two sprockets connected by a roller chain. The sprockets have hardened teeth that engage with the chain rollers, providing a reliable power transmission. Standard roller chain couplings are generally suitable for applications with moderate torque and speed requirements.
  • Double Roller Chain Couplings: Double roller chain couplings are similar to standard roller chain couplings but feature two parallel roller chains instead of one. This design increases the torque capacity and allows for higher power transmission. Double roller chain couplings are often used in applications that require higher torque and increased load-bearing capabilities.
  • Silent Chain Couplings: Silent chain couplings, also known as inverted-tooth chain couplings, use a special toothed chain with a meshing sprocket design. The teeth of the chain engage with the sprocket grooves, providing a smooth and quiet operation. Silent chain couplings are commonly used in applications where noise reduction is important, such as precision machinery or equipment operating in noise-sensitive environments.
  • Heavy-Duty Chain Couplings: Heavy-duty chain couplings are designed for applications that demand robust and rugged performance. They are constructed with larger sprockets and heavy-duty roller chains to handle high torque and heavy loads. These couplings are commonly used in industries such as mining, steel, and paper manufacturing, where extreme operating conditions and heavy machinery are present.
  • Flexible Chain Couplings: Flexible chain couplings incorporate an elastomeric element, such as a rubber or polyurethane insert, between the sprockets and the chain. This element provides flexibility, damping, and some degree of misalignment compensation. Flexible chain couplings are suitable for applications that require shock absorption, vibration damping, and moderate misalignment tolerance.
  • Stainless Steel Chain Couplings: Stainless steel chain couplings are specifically designed for applications that require corrosion resistance and sanitation, such as food processing, pharmaceutical, and chemical industries. They are made of stainless steel or other non-corrosive materials to withstand harsh environments and maintain hygienic conditions.

These are just a few examples of the different types of chain couplings available. Each type has its own advantages and is suitable for specific application requirements. It is important to carefully consider the torque, speed, misalignment, environmental factors, and other application-specific needs when selecting the appropriate chain coupling type for your particular application.

China Good quality High Quality Rubber Shaft Tyre Flexible Coupling for Mechanical Equipment  China Good quality High Quality Rubber Shaft Tyre Flexible Coupling for Mechanical Equipment
editor by CX 2023-10-03