Product Description

JJ is a leading provider of dependable, high-quality power transmission products for customers. One of our facilities focuses on manufacturing chain coupling, curved-tooth coupling, claw-type coupling, and disc-type coupling. We’re available to make customers satisfied. We also comply with customers requirements OEM-embranced.
 

ITEM NO. TORGUE PLAIN
BORE
MAX.
BORE
BUSH
LENGTH
BUSH
DIA
BORE
OF
CENTER
D DH L E T T S A C ADJUST.
NUT
ADJUST.
BOLT
SET
SCREW
WEIGHT
kgf-m mm mm mm   mm   mm mm mm mm mm mm mm mm mm mm kg
TL200-1 0.3-1 7.0 14.0 3.8 30 -0.571 30 .+0.03 50.0 24.0 29.0 6.5 2.6 2.5 7.0   38.0 M24
P1.0
    0.2
TL200-2 0.7-2 -0.049 0
TL250-1 0.7-2.8 10.0 22.0 4.5 41 -0.571 41 .+0.05 65.0 35.0 48.0 16.0 4.5 3.2 9.0 4.0 50.0 M35
P1.5
  M5 0.5
TL250-2 1.4-5.5 -0.045 0
TL350-1 2.0-7.6 17.0 25.0 6.5 49 -0.571 49 .+0.05 89.0 42.0 62.0 19.0 4.5 3.2 16.0 6.0 63.0 M42
P1.5
  M6 1.2
TL350-2 3.5-15.2 -0.065 0
TL500-1 4.8-21.4 20.0 42.0 6.5 74 -0.050 74 .+0.05 127.0 65.0 76.0 22.0 5.7 3.2 16.0 7.0   M65
P1.5
M8 P1.0
3 PCS
M8 3.0
TL500-2 9.0-42.9 -0.100 0
TL700-1 11.8-58.1 30.0 64.0 9.5 105 -0.075 105 .+0.05 178.0 95.0 98.0 24.0 7.7 3.2 29.0 8.0   M95
P1.5
M10 P1.5
3 PCS
M10 6.7
TL700-2 22.8-110.6 -0.125 0
TL100-16 40-130 30.0 72.0 12.5 135 -0.085 135 .+0.07 254.0 100.0 115.0 23.0 15.0 4.0 24.0   19.0   M18 P1.5
3 PCS
  21.0
TL100-24 60-190 -0.125 -0.125
TL140-10 90-272 40.0 100.0 15.5
19.5
23.5
183 -0.070 183 .+0.07 356.0 145.0 150.0 31.0 13.0 4.0 29.0   27.0   M26 P1.5
3 PCS
  52.0
TL140-15 200-400 -0.120 0
TL240-6 250-500 50.0 130.0 15.5
19.5
23.5
226 -0.070 226 .+0.07 508.0 185.0 175.0 36.0 15.0 4.0 31.0   36.0   M32 P1.5
3 PCS
  117.0
TL240-12 470-950 -0.120 0

chain coupling

What are the common materials used in chain couplings?

Chain couplings are commonly made from various materials that offer the necessary strength, durability, and wear resistance required for transmitting torque between shafts. The choice of materials depends on factors such as the application requirements, operating conditions, and the specific design of the coupling. Here are some common materials used in chain couplings:

  • Steel: Steel is one of the most widely used materials for chain couplings. It offers excellent strength, toughness, and resistance to wear and fatigue. Carbon steel and alloy steel are commonly used, with alloy steel providing enhanced properties such as higher tensile strength and improved corrosion resistance.
  • Stainless Steel: Stainless steel is chosen for chain couplings when corrosion resistance is a critical requirement. It offers good mechanical properties along with resistance to rust and corrosion, making it suitable for applications in harsh environments or where exposure to moisture or chemicals is present.
  • Cast Iron: Cast iron is occasionally used for chain couplings, particularly in applications where cost-effectiveness and moderate strength are important factors. Cast iron provides good wear resistance and can withstand moderate loads and operating conditions.
  • Bronze: Bronze is utilized in certain specialized chain couplings, especially in applications where self-lubrication and high resistance to corrosion are required. Bronze has good friction properties and can operate in conditions where lubrication may be limited or unavailable.
  • Plastics: In some cases, certain plastics, such as nylon or polyurethane, are used for chain coupling components like chain guides or protective covers. Plastics offer low friction, noise reduction, and resistance to chemicals, making them suitable for specific applications.

It’s important to note that the materials used in chain couplings may vary depending on the specific manufacturer, coupling design, and application requirements. It is recommended to consult the manufacturer’s specifications and guidelines to determine the appropriate materials for a particular chain coupling.

Additionally, in some cases, chain couplings may incorporate a combination of different materials, such as steel for the sprockets and roller chain, and elastomers for the flexible elements. This hybrid construction allows for optimized performance, balancing strength, flexibility, and damping characteristics.

Overall, the selection of materials for chain couplings is crucial to ensure reliable and efficient power transmission while considering factors such as load capacity, operating conditions, and the desired service life of the coupling.

chain coupling

What are the key components of a chain coupling?

A chain coupling consists of several key components that work together to transmit power and accommodate misalignments. Here are the main components of a chain coupling:

  • Sprockets: Sprockets are the toothed wheels that engage with the chain. They are typically made of steel or other durable materials and have specially designed teeth that mesh with the chain rollers. The sprockets provide the driving and driven connections, transmitting torque from one shaft to another.
  • Roller Chain: The roller chain is a series of interconnected links with rollers between them. It is looped around the sprockets, with the rollers engaging with the sprocket teeth. The roller chain transfers the rotational motion from the driving sprocket to the driven sprocket, allowing power transmission between the shafts.
  • Connecting Pins: Connecting pins are used to join the links of the roller chain together, forming a continuous loop. These pins are inserted through the pin holes in the chain links and secured with retaining clips or other fasteners. They ensure the integrity and strength of the chain.
  • Bushings or Bearings: Bushings or bearings are used to support the shafts and allow them to rotate smoothly within the chain coupling. They are typically inserted into the bores of the sprockets and provide a low-friction interface between the shaft and the coupling components.
  • Guard or Cover: In some chain couplings, a guard or cover is added to enclose the sprockets and chain. This serves as a protective barrier, preventing contact with moving parts and reducing the risk of accidents or injuries. The guard or cover also helps to contain lubrication and protect the chain from contaminants.
  • Lubrication: Lubrication is essential for the smooth operation and longevity of a chain coupling. Proper lubrication reduces friction, wear, and noise. Lubricants, such as chain oil or grease, are applied to the chain and sprockets to minimize frictional losses and prevent premature wear.

These components work together to provide a reliable and efficient power transmission in chain couplings. The sprockets engage with the roller chain, and as one sprocket rotates, it drives the chain, causing the other sprocket and the connected shaft to rotate. The roller chain and its components, along with lubrication, allow for flexibility and compensation of misalignment between the shafts.

chain coupling

How does a chain coupling work?

A chain coupling works by connecting two rotating shafts using a roller chain and sprockets. The sprockets have teeth that engage with the rollers of the chain, creating a positive drive mechanism.

When the first shaft rotates, it drives the sprocket attached to it. The engaged chain then transfers the motion to the second sprocket and the second shaft, causing it to rotate as well.

The chain coupling design allows for flexibility and misalignment compensation. In the presence of angular misalignment between the shafts, the chain can accommodate the deviation by flexing and adjusting its position on the sprockets. Similarly, if there is parallel misalignment or axial displacement, the chain coupling can flex and adjust to maintain proper engagement and transmit torque between the shafts.

The engagement between the sprocket teeth and the chain rollers ensures a positive drive, meaning that the torque from the driving shaft is efficiently transferred to the driven shaft. This makes chain couplings suitable for applications where high torque loads need to be transmitted.

Proper lubrication is essential for the smooth operation and longevity of a chain coupling. Lubricants such as oil or grease are applied to the chain and sprockets to reduce friction and wear. The lubrication helps prevent heat buildup and ensures the chain and sprockets rotate smoothly, minimizing power losses and extending the lifespan of the coupling.

In summary, a chain coupling operates by using a roller chain and sprockets to connect two rotating shafts. The engaged chain transfers torque from the driving shaft to the driven shaft, while accommodating misalignment between the shafts. The positive drive mechanism and the flexibility of the chain make chain couplings effective in transmitting high torque loads while allowing for smooth and reliable power transmission.

China Custom TL350-1 Transmission Coupling Chain Coupling  China Custom TL350-1 Transmission Coupling Chain Coupling
editor by CX 2023-11-07